PEL CAPRE

Improve the way that process engineers use Excel for calculations

le Home Insert Pa	ge Layout Formulas	Data	Revie	w View	Automat	te D	evelop	er Help	Acrobat	PDF-XC	hange	CAP	R
Fluid Flow ~ 📃 Equipment	t ~ 🛛 🧮 Size Estimatio	۱×	Phy	sical Propertie	s~ 🔳	Admini	istration	~ D Pipe	Inner Diame	ter M N	lolecular	Weight	Ł
Heat Transfer * 📓 Safety *	Required Relie	f Rate y						P Dira	Roughness	.10	raph Rea	ectaur	
	in required rank	i nate							-	200	raphi nei	sue	
Mass Transfer Y								K K-Va	lue				
PEW	Pressure Rel		Div	sical Properties		Adminis	tration			Tools			
PEW	Pressure roet	41		Asical Properties		Agriano	tration			10015			
• I X 🗸	∫r PEL												
A 8 C D	EFGF	i ji i	1.1	K L		N	0	PQ	R S	U	v	w	
A		ompressit			Dient Project No		-						
A TÜVRheinland	d® me	ompressi	ne Flow		Project No Revision N		-						
Precisely Right.		PEW in E	rcel		Calculation								
					Sheet			2 of 2					
TEF INPUT DATA		_	_		_			REV					
1 2													
3	CALCULATION TYPE	F	LOW										
Directory Directory													
Pipe Inner Diameter			m		Dine D.			Calculator					
Standard Pipe Steel Pipe (NPS/NB/DN)	DIAMETER		mm		ripe K	Jugn	ness	calculator	×				
Sizes: Schedules Available:	JINING THICKNESS		mm										
1/4" 40 / STD / 40S	ROUGHNESS		mm		The following	are quid	es as to th	e roughness of son					
3/8 80 / X5 / 805 1/2	ECTIVE DIAMETER		0 mm		typical intern	al pipe su	rfaces:						
3/4"	ES				Surface Type			Absolute Roughne	ia (mm)				
110	TATIC HEAD LOSS		m		Glass, plastic		bing	0.0015					
11/2	FITTINGS LOSS				Stainless Ste Mid Steel (sli			0.025					
					Mid Steel (m	oderate na	et laver)	0.250					
3° Y Return	PROPERTIES				Cast iron, cor	crete, timi	ber	0.250					
Inner Diameter: 7.81 mm @	VISCOSITY		kg/m3 eP		Mid Steel (ba Brickwork	edy corred	led)	1.000	3,000				
Wall Thickness: 1.24 mm	Hactarri		Cr.		-								
Outside Diameter 10.30 mm O	ESS CONDITIONS				- F	OK		Cancel					
OK Cencel	MASS FLOW		kgih	(Estimated)			_	1 1 1					
OK Cancel	PRESSURE DROP		bar diff										
24 24 25													
25													
26													
27 28													
29 CALCULATION RESULTS			-		-		_						
30													
31													
32	MASS FLOW	IINZA		(Calculated)									
33 34	PRESSURE DROP DIAMETER		0 bar diff 0 mm	(Specified) (Specified)									
34	ROUGHNESS		0 mm	[Specified]									

PEL CAPRE adds the reassurance of validated calculation methods to the functionality and flexibility of a spreadsheet.

Calculations are an essential part of a process engineer's job. Undetected errors in calculations can result in poor design. Errors picked up late in design result in delays or costly modifications if equipment is installed. Spreadsheets are straight forward to use but this simplicity is also a weakness as they are hard to check and it is easy to make mistakes. Once created, spreadsheets are hard to maintain and tend to evolve over time as engineers modify them. Once this happens the validity of the original calculation is compromised. PEL CAPRE provides fully documented and validated pro formas and functions with extensive unit conversion capability.

WHAT WE OFFER

PEL CAPRE is an Excel add-in that gives engineers an easy-to-use and flexible collection of calculations which are widely used, correctly implemented, and fully documented. In addition to calculation templates and tools which allow new users to start generating useful results immediately, PEL CAPRE provides an innovative set of process engineering functions which can be part of any Excel spreadsheet and which remove the risk of errors in the handling of units of measurement. This increases the productivity of process engineers and improves the quality of engineering calculations.

KEY FEATURES

- Over 30 easy to use pro forma spreadsheets addressing common engineering problems, such as fluid flow, equipment sizing and pressure-relief
- Excel functions for many process engineering equations to use in your own spreadsheets
- Built-in units conversion
- Thorough help documentation describes the use of functions and the basis of calculations
- 'Insert function' tool to help add individual PEL CAPRE functions to your own spreadsheets and produce your own datasheets
- Search for specific functions and make 'favourite' the most commonly used for easy access
- Change and create sets of units to be saved and used as default

Fi	ile Home Insert	Page Layo	ut Formula	s Data F	leview View	Automate Deve	eloper Help	Acro
Fluid Flow v Image: Equipment v Image: Equipment v Image: Heat Transfer v Image: Equipment v Image: Equipment v Image: Mass Transfer v Image: Equipment v Image: Equipment v					sical Properties ~	Administration ~	D Pipe Inner D R Pipe Rough K K-Value	
	PEW		Pressure Relief	Phy	sical Properties	Administration		Too
	• E X •	f _x	Pressure					
	A	в	C	CAPRE: I	nsert Func	tion	- 🗆	×
1	Pressure	1	bar	Categories	Search	Tags F	avourites	
2	Specific Volume		m3/kg	All categories				~
3	Omega							
4	Backpressure Ratio							
	API520_2Phase_MassFlux	#VALUEI	kg/s.m2	Functions				
6				Absolute Pressure	Ratio			
7 8				AbsoluteTempera	ture Ratio ent Normal Air Mass Flo			
9				API2000 Equival	entNormalAirVolumeF	low		
10				API2000_HeatIng API2000_HeatIng	ut From FireInc Pressu	re		
11				API2000 Require	dFlowCapacityForFire CriticalPressureRatio	,		
12				API520 2Phase	MassFlux			
13				API520_2Phase_ API520_2Phase	MassFlux_Critical MassFlux Subcritical			
14				API520_2Phase_ API520_2Phase	Omega Density			_
15						w of a two-phase fluid		
16								
17								
18				Show Help	Show Equation?	Save as Favourite?	ОК С	ancel
19								

					Page L	,										
2	0		¥ :	\times	~	fx										
	A	В	с	D	E	F	G	н	1.1	J	к	L	M	N	0	Р
Г					-				ur or Tw				Client			
1		Z TÜVRheinland [®] Direct Integ								Project N	2.					
1	Ŀ					ct integi	ration o		ntropic	Flow	Revision					
Į.		Pr	Precisely Right.				API 520						Calculatio	in No.		
Ŀ		INPUT											Sheet		2	of 2
Н	HEF 1	INPUT	DATA		-	_					_					_
H	2						FLUID									
H	3						LOID									
h	4															
Г	5															
Γ	6				EF VALVE			Ps		barg						
Ľ	7			RELIE	F VALVE			P		%						
L	8					VING PRE		PØ	1.01325							
L	9				RELIEVING			TI		C						
H	10			1	DOWNSTR	EAM PRE	SSURE	Pa		bara						
H	11			COLIDE	FLOW T	upolicu	DEVICE	w		ka/h						
H	13			LGOINEL	FLOW I	nnodah	DEVICE	*		kgm						
È	14															
F	15	CHECK	FOR CF	RITICAL FI	LOW											
Г	16														2	
E	17						S FLUX	6		kg/s.m2						
E	18				THE	ROAT PRE		Pt		bara						
L	19					FLUID D		P		kg/m3						
H	20					RITICAL	FLOW?		NO							
H	21 22				ASS FLU											
	23					TABT PBE		P max	0	bara						
	24					END PRE				bara						
	25															
	26				BACKP	RESSURE	BATIO	90	0							
	27															
	28	COLLEG	OFFIC													
	29 30	LUEFF	ICIENTS	•	_						_	_				_
H	30				DISCHAR	E COET	LICIENT	Kď	0.85							
H	31	COBB	ECTION		DUE TO E			KD	0.85							
h	33				ON CORR			Kc	i							
	34				TY CORR			Kr	i							
Ľ	35															
	36	SIZING	AND CA	PACITY												
	37															
	38					AREA RE		A		mm2				SIZES (EI		rea)
	39					KdA RE	QUIRED	KdA	*****	mm2		Orifice		Orifice	mm2	
H	40 41					QUOTE	DAREA			mm2		D	71	M	1841 2323	
H	41					KdA SP			đ	mm2 mm2		F	126	N	2323	
	42					KUA SPI	LOUIED		U			G	325	P	4116	
	44				BATED V		PACITY		IINFA	kolh		H	506	Q	7129	
			Shee	1.4 m	rect Inte			+)						-		

- Includes standard PEL Tools, such as pipe inner diameter, pipe roughness, K-Value and molecular weight, to insert values directly into spreadsheets
- Provides a simple system for inserting commonly used engineering equations into Excel to allow engineers to generate their own spreadsheets and datasheets quickly and efficiently

BENEFITS

- Users can have complete confidence in the results
- Reduces risk of human errors in calculations essential when working with safety critical equipment
- Allows engineers to be more efficient and productive
- Provides a documented record of calculations for audit
- Improves QA and standardises procedures by everyone using the same set of data and calculations
- PEL CAPRE can be licensed as an add-on to PEL or as a completely separate programme
- Reduces checking time as all calculations are in a standard format

WHY TÜV RHEINLAND?

We are leading pressure relief experts, having developed and licenced widely adopted methodology for pressure relief design management. We run IChemE accredited pressure relief courses and have trained hundreds of engineers in pressure relief design.

PEL software has been helping process engineers for over thirty years. It has a proven track record providing relevant and reliable engineering tools. The software is extremely easy to use and you can be up and running within minutes. We are constantly developing our software to improve functionality and usability.

Our range of training documentation includes a 60 second guide, reference guide and full user manual to ensure that you get the most out of the software. PEL CAPRE also has context sensitive online help. We pride ourselves on the quality of the support service we offer. The licence agreement provides unlimited hotline support via email and phone.

We can also provide training sessions at our offices or on-site.

TÜV Rheinland Industrial Services Limited Technical Engineering Consultancy PEL Support Services Pavilion 9, Byland Way Belasis Business Park Billingham TS23 4EB United Kingdom +44 1925 93 8668 pel.support@tuv.com www.tuv.com/pelsoftware

